Spectral-Based SPD Matrix Representation for Signal Detection Using a Deep Neutral Network

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the solving matrix equations by using the spectral representation

‎The purpose of this paper is to solve two types of Lyapunov equations and quadratic matrix equations by using the spectral representation‎. ‎We focus on solving Lyapunov equations $AX+XA^*=C$ and $AX+XA^{T}=-bb^{T}$ for $A‎, ‎X in mathbb{C}^{n times n}$ and $b in mathbb{C} ^{n times s}$ with $s < n$‎, ‎which $X$ is unknown matrix‎. ‎Also‎, ‎we suggest the new method for solving quadratic matri...

متن کامل

A Riemannian Network for SPD Matrix Learnin

Symmetric Positive Definite (SPD) matrix learning methods have become popular in many image and video processing tasks, thanks to their ability to learn appropriate statistical representations while respecting Riemannian geometry of underlying SPD manifolds. In this paper we build a Riemannian network architecture to open up a new direction of SPD matrix non-linear learning in a deep model. In ...

متن کامل

A Riemannian Network for SPD Matrix Learning

Symmetric Positive Definite (SPD) matrix learning methods have become popular in many image and video processing tasks, thanks to their ability to learn appropriate statistical representations while respecting the Riemannian geometry of the underlying SPD manifold. In this paper we build a Riemannian network to open up a new direction of SPD matrix non-linear learning in a deep architecture. Th...

متن کامل

DeepKSPD: Learning Kernel-matrix-based SPD Representation for Fine-grained Image Recognition

Being symmetric positive-definite (SPD), covariance matrix has traditionally been used to represent a set of local descriptors in visual recognition. Recent study shows that kernel matrix can give considerably better representation by modelling the nonlinearity in the local descriptor set. Nevertheless, neither the descriptors nor the kernel matrix is deeply learned. Worse, they are considered ...

متن کامل

An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network

Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2020

ISSN: 1099-4300

DOI: 10.3390/e22050585